The Crystal Structure of $\mathbf{Z r}_{9} \mathbf{S}_{\mathbf{2}}{ }^{\mathbf{*}}$

By Horng-Yih Cheng and Hugo F. Franzen
Institute for Atomic Research and Department of Chemistry, Iowa State University, Ames, Iowa, U.S.A.

(Received 28 May 1971)

Abstract

The crystal structure of body-centered tetragonal $\mathrm{Zr}_{9} \mathrm{~S}_{2}$ has been determined. It belongs to space group $I 4_{1} /$ amd (No. 141), and its lattice parameters are $a=9.752 \pm 0.001$ and $c=19.216 \pm 0.003 \AA$. The structure is interpreted as consisting of interpenetrating distorted C.N. 14 Kasper polyhedra coordinating central Zr atoms, and square antiprisms coordinating sulfur atoms. Two S atoms replace two Zr atoms at the 1 and 3 positions of one of the hexagonal rings of the Kasper polyhedra. It is shown that these structure features are also found in several structure types common to a number of metal-rich compounds with group V b and VI b elements. The significance of the occurrence of the Kasper polyhedra and square antiprisms in $\mathrm{Zr}_{9} \mathrm{~S}_{2}$ is discussed from the viewpoint of chemical bonding in solids.

Introduction

The zirconium-sulfur compounds that are stable at high temperatures have been examined in the composition range $\mathrm{S} / \mathrm{Zr}<1.5$ by Conard \& Franzen (1971). In the metal-rich region three phases, namely $\mathrm{Zr}_{2} \mathrm{~S}$, $\mathrm{Zr}_{21} \mathrm{~S}_{2}$ and $\mathrm{Zr}_{9} \mathrm{~S}_{2}$ were reported. The $\mathrm{Zr}_{2} \mathrm{~S}$ phase, isostructural with $\mathrm{Ti}_{2} \mathrm{~S}$ (Owens, Conard \& Franzen, 1967), has the $\mathrm{Ta}_{2} \mathrm{P}$-type structure, and $\mathrm{Zr}_{21} \mathrm{~S}_{8}$ is isostructural with $\mathrm{Nb}_{21} \mathrm{~S}_{8}$ (Franzen, Beineke \& Conard, 1968). In both $\mathrm{Zr}_{2} \mathrm{~S}$ and $\mathrm{Zr}_{21} \mathrm{~S}_{8}$, the sulfur atoms have capped trigonal-prismatic coordination while the metal atoms have capped cubic coordination, as in the b.c.c. structure of pure metals. The tendency for the sulfur atoms to have capped trigonal-prismatic coordination, and for the metal atoms to have capped cubic coordination is common to many metal-rich chalcogenides, (Franzen, Smeggil \& Conard, 1967). The purposes of the investigation reported here were to determine the crystal structure of the $\mathrm{Zr}_{9} \mathrm{~S}_{2}$ phase and to examine and discuss the various coordinations of both metal and chalcogen atoms in metal-rich compounds.

The preliminary crystallographic data reported for $\mathrm{Zr}_{9} \mathrm{~S}_{2}$ by Conard (1969) \dagger and later by Conard \& Franzen (1971) can be summarized as follows. Compound $\mathrm{Zr}_{9} \mathrm{~S}_{2}$, body-centered tetragonal, $a=9.752 \pm$ 0.001 and $c=19 \cdot 216 \pm 0.003 \AA, V=1827.5 \AA^{3}, D_{m}=$ $6 \cdot 4 \pm 0 \cdot 1, \quad D_{x}=6 \cdot 422 \quad$ g.cm ${ }^{-3}, \quad Z=8 . \quad$ Мо $K \alpha \quad(\lambda=$ $0.7107 \AA$), $\mu=102 \mathrm{~cm}^{-1}$. Nonextinction conditions: $h k l$ when $h+k+l=2 n$; $h k 0$ when $h=2 n$; and $h h l$ when $2 h+l=4 n$. Space group $I 4_{1} /$ amd (No. 141).

Experimental

Single-crystal X-ray diffraction data were collected with a Hilger-Watts four-circle automatic diffrac-

[^0]tometer, coupled with an SDS 910 computer as described elsewhere (Dahm, Bensen, Nimrod, Fitzwater \& Jacobsen, 1967). The data were recorded with Mo $K \alpha$ radiation filtered by zirconium. Peak-height intensities were measured for all the nonextinguished reflections in the first octant with $\theta \leq 30^{\circ}$. In addition, integrated intensity data were obtained for some selected strong reflections covering the whole θ range. The peak-height data were converted into integrated intensities with the factors obtained, as a function of the θ angle, from the ratio of the 102 integrated data to the corresponding peak-height data. Lorentz and polarization corrections were applied. The irregularly shaped single crystal used in the data collection could be approximated to a sphere with a radius of 20 microns. For this small crystal, $\mu R=0.02 \mathrm{~cm}^{-1}$, no absorption correction was made.

Determination and refinement of structure

Based on the assumption that the fluctuation level of the counter was proportional to the square root of the total counts, the uncertainties of the intensity data were calculated as $(A+B)^{1 / 2} /(A-B)$, where A and B are respectively the peak height and the background counts. Of the 1536 intensity data obtained, 607 had less than 25% uncertainty. These 607 data were used in the structure determination and refinement.

The crystal structure was determined by superposition of the three-dimensional Patterson maps. If the possibility of a homometric vector set is ignored, the application of the superposition technique in two successive steps in principle yields an unambiguous crystal structure, provided that the Patterson vector set is determined accurately. To obtain the Patterson vector set the value of the Patterson function was calculated at approximately $0.15 \AA$ intervals. The Patterson map was analyzed graphically for peak locations with the following assumptions: (1) every variation of Patterson function values is significant; (2) only $\mathrm{Zr}-\mathrm{Zr}$ peaks are important; and finally (3) a single $\mathrm{Zr}-\mathrm{Zr}$ peak is

Table 1. Refined atomic parameters for $\mathrm{Zr}_{9} \mathrm{~S}_{2}$

	Wyckoff notation	Point symmetry	x	y	z	$\beta\left(\AA^{2}\right)$
	$16(f)$	2	$0.1788(2)$	0	0	$0.51(4)$
$\operatorname{Zr}(1)$	$16(h)$	m	0	$0.3981(3)$	$0.3014(1)$	$0.39(5)$
$\operatorname{Zr}(2)$	$16(h)$	m	0	$0.0789(3)$	$-0.4309(1)$	$0.53(5)$
$\operatorname{Zr}(3)$	$16(h)$	m	0	$-0.0289(3)$	$0.1422(1)$	$0.51(5)$
$\operatorname{Zr}(4)$	$8(e)$	$m m$	0	0.25	$0.0106(2)$	$0.63(7)$
$\operatorname{Zr}(5)$	$16(g)$	2	$0.2723(4)$	$0.25+x$	$\frac{7}{8}$	$0.37(10)$

symmetrical with a base no more than $1.0 \AA$ in diameter. The validity of the last assumption was concluded rather arbitrarily from the analysis of some of the simplest peaks in the map. On the basis of these assumptions, 705 Patterson vectors were located in half of the Patterson space covering z from $-\frac{1}{4}$ to $\frac{1}{4}$. These

Table 2. Observed and calculated structure factors for $\mathrm{Zr}_{9} \mathrm{~S}_{2}$

 \qquad

vectors were used in the superposition operation, which was simply to numerically match the vector coordinates from two maps after the origin of one of the maps was moved to a vector position on the other. The shift vector chosen corresponded to a pe $\dot{\alpha} \mathrm{k}$ on the Patterson map with low intensity and whose location was determined with the highest certainty. Two vectors were considered superimposed if their three positional coordinates were within $0 \cdot 15 \AA$ of each other. The number of vectors was reduced to 82 at the end of the first step and further reduced to 36 after the secondstep superposition. The relative positions of these vectors were taken as the locations of 36 Zr atoms, or 72 in a full-unit cell. An inversion center in the distribution of these atoms positions was chosen for the origin. It was found that the 72 atomic positions could be represented by five independent positions. Sixteen sulfur atoms, all equivalent, were later located from Fourier synthesis. The structure was refined using least-squares computation (Busing, Martin \& Levy, 1962), with atomic scattering factors by Hansen, Herman, Lea \& Skillman (1964), corrected for anomalous dispersion according to Cromer \& Liberman (1970). Isotropic temperature factors were assumed in the refinement. Every Zr atom was located by the superposition technique to within $0 \cdot 1 \AA$ and none of the 36 peaks was rejected.

The final refinement of the position parameters and the temperature factors resulted in the data shown in Table 1. The uncertainties in the atom positions were generally within $0.003 \AA$. The 607 calculated structure factors are compared with the observed structure factors in Table 2. The unweighted R value was $0 \cdot 055$, and the value decreased to 0.049 if the data were weighted with $w=1 / \sigma^{2}\left(F_{o}\right)$, where $\sigma^{2}\left(F_{o}\right)$ is the probable error of F_{o}, calculated from the uncertainties of the intensity data. The difference Fourier map obtained with these data was devoid of significant maxima. Overall, the highest value in the difference electron density map corresponded to about 0.5 e , and specifically at the atom positions, the residual peaks had values corresponding to less than 0.25 e .

The nearest neighbors and their interatomic distances for the six independent atoms calculated from the position parameters in Table 1 are listed in Table 3, and the coordinations are shown in Fig. 1. For each independent atom, the next nearest neighbors, which are not included in the coordination polyhedra in Fig. 1, are listed in the last 1ows in Table 3. The overall
structure viewed along the b axis, with some special emphasis to be discussed later, is shown in Fig. 2.

Results and discussion

As can be seen in Fig. 1, all the metal atoms in $\mathrm{Zr}_{9} \mathrm{~S}_{2}$ have complex coordination polyhedra. Among them are slightly distorted C.N. 14 Kasper polyhedra for $\mathrm{Zr}(2)$ and $\mathrm{Zr}(3)$. The sulfur coordination is squareantiprismatic. The distortions in the coordination polyhedron of $\operatorname{Zr}(2)$, from an ideal Kasper polyhedron, are partly the result of substituting two sulfur atoms fo two zirconium atoms in the 1,3 positions of one of the six-membered rings. The Zr atoms in the other sixmembered ring lie in a mirror plane which bisects the distance between the central $\mathrm{Zr}(2)$ and the apical $\mathrm{Zr}(2)$ atoms. Because of the mirror plane, the apical $\mathrm{Zr}(2)$ atom is also the central atom of a second Kasper polyhedron, which penetrates the first in such a way that the center of one is the apex of the other. The combined structure of the two interpenetrating Kasper polyhedra has the following sequence: $\mathrm{Zr}(5)$; a sixmembered ring containing two sulfur atoms; $\operatorname{Zr}(2)$; a planar six-membered ring containing only zirconium atoms; $\mathrm{Zr}(2)$; a six-membered ring containing two sulfur atoms; and $\operatorname{Zr}(5)$. The outer apices of the two inter-
penetrating polyhedra are formed by two $\mathrm{Zr}(5)$ atoms. The coordination of $\mathrm{Zr}(5)$ is not simply related to a Kasper polyhedron, as can be seen in Fig. 1(e). There are six near neighbors of $\operatorname{Zr}(5)$: four $\operatorname{Zr}(1)$ atoms at $3.004 \AA$ and two $\mathrm{Zr}(2)$ atoms at $3.135 \AA$. The remaining atoms shown in Fig. 1(e) are at distances between 3.520 and $3.713 \AA$.

A view of the structure, emphasizing the polyhedra around the $\mathrm{Zr}(2)$ atoms, is shown in Fig. 2. In the direction of the b axis, the pairs of interpenetrating polyhedra are joined by common apical $\operatorname{Zr}(5)$ atoms. These interpenetrating polyhedra form zigzag chains in the a direction by sharing triangular faces. In a unit cell, there are fragments of two such chains, each containing two units of the interpenetrating polyhedra. Finally, consideration of the operation of the 4_{1} axis on the chains of these polyhedra completes the description of the structure. The regions of the structure where no solid lines are drawn in Fig. 2 contain the interpenetrating polyhedra, with the zigzag chains running in the b direction, and with the principal axes of the polyhedra parallel to the a direction. Polyhedra with principal axes at right angles interpenetrate, such that apical and central $\mathrm{Zr}(2)$ atoms in the a direction polyhedra are ring atoms in the \mathbf{b} direction polyhedra.

The $\mathrm{Zr}_{9} \mathrm{~S}_{2}$ structure has little similarity to the struc-

Table 3. The nearest neighbors and their interatomic distances in $\mathrm{Zr}_{9} \mathrm{~S}_{2}$

Central atom	Type of neighbors	No. of neighbors	$\begin{aligned} & \text { Distances } \\ & (\pm 0.003 \AA) \end{aligned}$	Central atom	Type of neighbors	No. of neighbors	$\begin{gathered} \text { Distances } \\ (\pm 0.003 \AA) \end{gathered}$
Zr(1)	S	2	2.578	$\mathrm{Zr}(4)$	S	2	2.722
	Zr (5)	2	3.004		$\mathrm{Zr}(4)$	2	$3 \cdot 122$
	$\mathrm{Zr}(2)$	2	$3 \cdot 126$		$\mathrm{Zr}(5)$		$3 \cdot 135$
	$\mathrm{Zr}(4)$	2	$3 \cdot 226$		$\mathrm{Zr}(1)$	2	$3 \cdot 226$
		2	$3 \cdot 254$			2	3.254
	$\mathrm{Zr}(1)$		3.487		$\mathrm{Zr}(3)$	2	$3 \cdot 276$
	$\mathrm{Zr}(3)$	2	$3 \cdot 488$		$\mathbf{Z}(2)$		$3 \cdot 314$
	$\mathrm{Zr}(3)$	2	4.247*		$\mathrm{Zr}(5)$	1	3.643
						1	3.713
					$\mathrm{Zr}(4)$	1	4.314*
$\mathrm{Zr}(2)$	S	2	2.745	$\mathrm{Zr}(5)$	Zr (1)	4	3.004
	Zr (2)	1	2.889		$\mathrm{Zr}(4)$	2	3.135
	$\mathrm{Zr}(3)$	1	3.050		$\mathrm{Zr}(2)$	2	$3 \cdot 520$
	$\mathrm{Zr}(1)$	2	$3 \cdot 126$		$\mathrm{Zr}(4)$	2	3.642
	$\mathrm{Zr}(3)$	2	3.199		$\mathrm{Zr}(3)$	2	3.673
	$\mathrm{Zr}(4)$	1	3.314		$\mathrm{Zr}(4)$	2	3.713
	$\mathrm{Zr}(2)$	2	3.489		S	4	4•101*
	$\mathrm{Zr}(5)$		$3 \cdot 520$				
	$\mathrm{Zr}(3)$	2	$3 \cdot 534$				
	S	2	4.375*				
$\mathrm{Zr}(3)$				S	$\mathrm{Zr}(1)$	2	2.578
	$\mathrm{Zr}(2)$	1	3.050		$\mathrm{Zr}(3)$	2	$2 \cdot 657$
	Zr (3)	1	3.069		$\mathrm{Zr}(4)$	2	2.722
	$\mathrm{Zr}(2)$	2	$3 \cdot 199$		$\mathrm{Zr}(2)$	2	2.745
	$\mathrm{Zr}(4)$	2	$3 \cdot 276$		$\mathrm{Zr}(5)$	2	4•101*
	$\mathrm{Zr}(3)$	1	3.337				
	Zr (1)	2	3.488				
	$\mathrm{Zr}(2)$	2	$3 \cdot 534$				
	$\mathrm{Zr}(5)$	1	$3 \cdot 673$				
	$\mathrm{Zr}(1)$	2	4-247*				

* The last row for each central atom represents its next nearest neighbors.
tures of the other known zirconium-rich sulfides, $\mathrm{Zr}_{2} \mathrm{~S}$ and $\mathrm{Zr}_{21} \mathrm{~S}_{8}$. As shown in Fig. 1, there is a variety of Zr coordination in $\mathrm{Zr}_{9} \mathrm{~S}_{2}$. None of it is cubic, and the coordination of sulfur is square-antiprismatic. On the other hand, a close examination of the crystal structures of $\alpha-\mathrm{V}_{3} \mathrm{~S}$ and $\beta-\mathrm{V}_{3} \mathrm{~S}$, reported by Pedersen \& Grenvold (1959), revealed their similarity to the structure of $\mathrm{Zr}_{9} \mathrm{~S}_{2}$. In these vanadium sulfides, the basic structural units of two tnterpenetrating C.N. 14 Kasper polyhedra (whose axes lie in [110] direction) differ from that of $\mathrm{Zr}_{9} \mathrm{~S}_{2}$ in that the terminating apical atoms in the former fall on the axes of the polyhedra, while those of the latter do not, apparently because the distortion caused by the substitution of two metal atoms by sulfur atoms in the Kasper polyhedra are greater in the case of Zr than they are in the case of V substitution. The sulfur atoms in both $V_{3} S$ phases have squareantiprismatic coordinations. The principal structural difference between α - and $\beta-\mathrm{V}_{3} \mathrm{~S}$ is that in the former the two substituting sulfur atoms in the Kasper polyhedra occupy 1,3 positions, as in $\mathrm{Zr}_{9} \mathrm{~S}_{2}$, while in the latter they occupy 1,4 positions. The structural unit formed by the interpenetration of two C.N. 14 Kasper polyhedra can also be found for zirconium in $\mathrm{Zr}_{3} \mathrm{Si}$, reportedly of $\mathrm{Ti}_{3} \mathrm{P}$-type structure (Schubert, Raman \& Rossteutscher, 1964), with the axes also lying in the [110] direction. The Si coordination in $\mathrm{Zr}_{3} \mathrm{Si}$, however, is
tricapped trigonal-prismatic, or tetrakaidecahedral, with a coordination number of 9 .

An interesting feature of the $\mathrm{Zr}_{9} \mathrm{~S}_{2}$ structure is the presence of a short $\mathrm{Zr}-\mathrm{Zr}$ distance of $2.89 \AA$. This distance is considerably less than distances found in the h. c. p. form of zirconium metal ($3 \cdot 18$ and $3.23 \AA$) and is comparable to that found in the high pressure ω phase structure of the metal $(2.91 \AA)$ when quenched to one atmosphere (Jamieson, 1963). Short intermetallic distances have also been found in other zir-conium-rich compounds, such as the σ-like $\mathrm{Zr}_{4} \mathrm{Al}_{3}$ ($2.70 \AA$) and the D_{m}^{8}-type $\mathrm{Zr}_{5} \mathrm{Al}_{3}(2.70 \AA)$ as discussed by Edshammar (1962), and other metal-rich sulfides, such as $\mathrm{Ta}_{6} \mathrm{~S}$ (Franzen \& Smeggil, 1970), $\mathrm{Ta}_{2} \mathrm{~S}$ (Franzen \& Smeggil, 1969), and the two $V_{3} S$ phases mentioned earlier. In all these cases, the short distances always appear between the apical and the central atoms of Kasper polyhedra. The geometry of an ideal C.N. 14 Kasper polyhedron (Frank \& Kasper, 1958) requires a short distance between the central and the apical atoms, but no theoretical explanation based on chemical bonding has been given for this tendency. The short $\mathrm{Zr}-\mathrm{Zr}$ distance in $\mathrm{Zr}_{9} \mathrm{~S}_{2}$ is almost $0.2 \AA$ greater than that in $\mathrm{Zr}_{4} \mathrm{Al}_{3}$ or in $\mathrm{Zr}_{5} \mathrm{Al}_{3}$. This difference is structurally significant. As described earlier, the pairs of $\mathrm{Zr}(2)$ atoms serve as central-apical atoms of a Kasper polyhedron in the a direction as well as the

Fig. 1. Coordinations and nearest neighbors of Zr and S atoms in $\mathrm{Zr}_{9} \mathrm{~S}_{2}$.

Fig. 2. Crystal structure of $\mathrm{Zr}_{0} \mathrm{~S}_{2}$ with $0.25 \leq y \leq 0.75$ viewed along y axis.$y=0.25$,
(1) $0.25<y<0.5$,
($y=0.5$,
有 $0.5<y<0.75$,
$y=0.75$.
ring atoms in the \mathbf{b} direction polyhedron. In the ring, a normal distance of about $3.2 \AA$ would be expected. Thus, the pair of atoms satisfies this dual nature by assuming an intermediate distance. In $\mathrm{Zr}_{4} \mathrm{Al}_{3}$ or in $\mathrm{Zr}_{5} \mathrm{Al}_{3}$, the axes of the polyhedra are parallel to the fourfold axis, and the pair of the central apical zirconium atoms do not possess this dual nature. Another consequence of the dual nature in these two atoms is the presence of a short side on the hexagon, leading to a slight distortion of the ring which lies on the mirror plane.

Square-antiprismatic coordination of sulfur has not been previously observed. Such a coordination, however, is known for Cu in the CuAl_{2} structure, which is also the structure of a number of intermetallic compounds, for example, $\mathrm{Zr}_{2} \mathrm{X}, \mathrm{X}=\mathrm{Si}, \mathrm{Ni}, \mathrm{Co}$ or Al (Pearson, 1967). Thus, square-antiprismatic coordina-
tion is well known for elements which are generally more metallic than sulfur, and in compounds that are generally more metallic than sulfides. Furthermore, the structures of many complex alloy compounds can be described with Kasper polyhedra, (Frank \& Kasper, 1959). Hence, the fact that the structure of $\mathrm{Zr}_{9} \mathrm{~S}_{2}$ can be viewed as consisting of Kasper polyhedra and square antiprisms emphasizes the similarity of this compound to intermetallic compounds, a similarity, which, if not anticipated, is at least not surprising in a compound with such a high metal content. However, the ability of sulfur to replace metal atoms in coordination polyhedra characteristic of metals, provides structural evidence in support of bonding models that include contributions of orbitals centered on the sulfur atoms to the conduction bands in conducting transi-tion-metal sulfides (Franzen, 1966).

References

Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). ORFLS, A Fortran Crystallographic Least-Squares Program. Report ORNL-TM-305. Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Conard, B. R. (1969). Ph.D. thesis, Iowa State University.
Conard, B. R. \& Franzen, H. F. (1971). High Temp. Sci. 3, 49.
Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891.

Dahm, D. J., Bensen, J. E., Nimrod, D. M., Fitzwater, D. R. \& Jacobson, R. A. (1967). USAEC Report IS-1701. Edshammar, L. E. (1962). Acta Chem. Scand. 16, 20.
Frank, H. F. \& Kasper, J. C. (1958). Acta Cryst. 11, 184.
Frank, H. F. \& Kasper, J. C. (1959). Acta Cryst. 12, 483.
Franzen, H. F. (1966). J. Inorg. Nucl. Chem. 28, 1575.
Franzen, H. F., Beineke, T. A. \& Conard, B. R. (1968). Acta Cryst. B24, 412.

Franzen, H. F. \& Smeggil, J. (1969). Acta Cryst. B25, 1736.

Franzen, H. F. \& Smeggil, J. (1970). Acta Cryst. B26, 125.

Franzen, H. F., Smeggil, J. \& Conard, B. R. (1967). Mat. Res. Bull. 2, 1087.
Hansen, H. P., Herman, F., Lea, J. D. \& Skillman, S. (1964). Acta Cryst. 17, 1040.

Jamieson, J. C. (1963). Science, 140, 72.
Owens, J. P., Conard, B. R. \& Franzen, H. F. (1967). Acta Cryst. 23, 77.
Pearson, W. B. (1967). A Handbook of Lattice Spacings and Structures of Metals and Alloys, Vol. 2. International Series of Monographs in Metal Physics and Physical Metallurgy, Vol. 8. Oxford; Pergamon Press.
Pedersen, B. \& Grønvold, F. (1959). Acta Cryst. 12, 1022.

Schubert, K., Raman, A. \& Rossteutscher, W. (1964). Naturwiss. 51, 506.

The Crystal Structure of $\mathbf{V}_{\mathbf{4}} \mathrm{O}_{7}$

By Hiroyuki Horiuchi, Masayasu Tokonami* and Nobuo Morimoto
Institute of Scientific and Industrial Research, Osaka University, Suita, Osaka, Japan
and Koichi Nagasawa \dagger
Institute for Chemical Research, Kyoto University, Uji, Kyoto, Japan

(Received 2 October 1971)

Abstract

Single crystals of $\mathrm{V}_{4} \mathrm{O}_{7}$ were synthesized by the chemical transport method. They are triclinic with space group $P \overline{1}$ and with $a=5 \cdot 504, b=7 \cdot 007, c=19 \cdot 243 \AA, \alpha=41 \cdot 3, \beta=72 \cdot 5, \gamma=109 \cdot 4^{\circ}$ and $Z=2.542$ crystallographically independent reflexions were collected with a 4 -circle single-crystal diffractometer. The structure was refined by full-matrix least-squares analysis to an R value of 0.084 for all the observed reflexions. The structure of $\mathrm{V}_{4} \mathrm{O}_{7}$ indicates considerable displacements of atoms from the ideal structure proposed by Andersson \& Jahnberg [Ark. Kem. (1963), 21, 413]. In particular, the distortions of the VO_{6} octahedra in the crystallographic shear boundary are remarkable. The $\mathrm{V}-\mathrm{O}$ distances are in the range $1 \cdot 78 \simeq 2 \cdot 12 \AA$ and the $\mathrm{O}-\mathrm{O}$ distances in the range $2 \cdot 52 \simeq 3.00 \AA$. The shortest $\mathrm{V}-\mathrm{V}$ distance is $2.778 \AA$ in the crystallographic shear plane.

Introduction

In the composition range $\mathrm{VO}_{x}, 1.750<x<1.887$, the existence of the homologous series of $\mathrm{V}_{n} \mathrm{O}_{2 n-1}(4 \leq n \leq 8)$, was ${ }^{2}$ revealed by X-ray powder diffraction (Andersson, Collen, Kuylenstierna \& Magneli, 1957). The structure of $\mathrm{Ti}_{5} \mathrm{O}_{9}$, which is isostructural with $\mathrm{V}_{5} \mathrm{O}_{9}$, was then determined by the X-ray single-crystal method (Andersson, 1960). The structure model of $\mathrm{Ti}_{5} \mathrm{O}_{9}$ was extended and successfully used to interpret the X-ray powder patterns of the other members

[^1]of the series of $\mathrm{V}_{n} \mathrm{O}_{2 n-1}$ and $\mathrm{Ti}_{n} \mathrm{O}_{2 n-1}$ by Andersson \& Jahnberg (1963).

However, details of the crystal structures of the homologous series of $\mathrm{V}_{n} \mathrm{O}_{2 n-1}$ and $\mathrm{Ti}_{n} \mathrm{O}_{2 n-1}$ have been unknown because of the difficulty in obtaining single crystals suitable for X-ray single crystal work.

Single crystals of $\mathrm{V}_{n} \mathrm{O}_{2 n-1}(3 \leq n \leq 8)$, of size 1 to 5 mm , were recently synthesized by the chemical transport method (Nagasawa, 1972), and the crystallography of $\mathrm{V}_{n} \mathrm{O}_{2 n-1}$ was studied, using these crystals, by the X-ray single-crystal method (Horiuchi, Tokonami, Morimoto, Nagasawa, Bando \& Takada, 1972). According to this study, the lattices of the homologous series of $\mathrm{V}_{n} \mathrm{O}_{2 n-1}\left(\mathbf{a}_{n}, \mathbf{b}_{n}\right.$ and $\left.\mathbf{c}_{n}, 4 \leq n \leq 8\right)$ can be systematically described on the basis of the parent rutile-type lattice ($\mathbf{a}_{r}, \mathbf{b}_{r}$ and \mathbf{c}_{r}) as follows:

[^0]: * Work was performed in the Ames Laboratory of the U.S. Atomic Energy Commission. Contribution No. 3033.
 \dagger The phase was then designated as $\mathrm{Zr}_{5} \mathrm{~S}$ instead of $\mathrm{Z}_{9} \mathrm{~S}_{2}$.

[^1]: * Present address: Mineralogisches Institut der Universität, 355 Marburg/Lahn, Deutschhausstrasse 10, Germany.
 \dagger Present address: Central Research Laboratory, Mitsubishi Electric Corp., Amagasaki, Hyogo, Japan.

